Seven Pitfalls in the Internet of Things

teamwork Forum Arbeitsplatzgestaltung, 21/06/2017, TU Chemnitz Dipl.-Kfm. Carsten Möllers

Seven Pitfalls in the Internet of Things

- **1.** Not understanding the Paradigm Change
- 2. Lack of Interoperability
- 3. Lack of Intelligence
- 4. Lack of Security
- 5. Lack of User Centered Design
- 6. Not understanding the real Driver
- 7. Not understanding the Impacts on Development

Smart Objects connect Digital and Real World

- The digital revolution of the 21st century will be much, much lager than previous two digital revolutions of personal computers and the internet
- We are now facing the digital revolution of the 21st century: Smart objects in the intenet of things, that interconnect the digital world with the physical world
- A smart object is a small mircoelectronic device that consists of a communication device, typically low power radio, a small mircoprocessor and a sensor and/or actuator.

Internet of Things changing Automation Paradigm

- The "Internet of Things" (IoT) is describing billions of embedded devices that are communicating with each other through internet technology without involving human beings directly
- In the automation context, the IoT means the shift from centralized and hierarchical control towards cooperative, distributed networks and control structures
- Formerly passive sensors (simple objects) become active players (smart objects) in networks and are enhanced with the capability for computation and decision making.

Enabling Technologies

Wireless Sensors

Wireless Sensor Networks

Why Wireless?

- Electrical wall socket + installation
 = 60 €
- CAT 5 socket + installation
 = 110 €
- 1 billion nodes?

Wireless Networking Technologies

	Bluetooth 4.1	Wifi	ZigBee 3.0	ZigBee Green	EnOcean
Standard	IEEE 802.15.1	IEEE 802.11	IEEE 802.15.4	IEEE 802.15.4	IEC 14543-3-10
Topology	Piconet, Scatternet	Star	Mesh, Star, Tree	Mesh, Star, Tree	P2P, Star
IPv6	Coming 4.2	Yes	ZigBee IP	e IP ./.	
RF frequency	2.4 GHz	2.4 GHz, 5,8 GHz 3.65 and 3.7 GHz	868/915 MHz, 2.4 GHz	868/915 MHz, 2.4 GHz	868 MHz/315 MHz
Data rate	<= 305 Kbit/s	<= 600 Mbit/s [n]	<= 250 Kbit/s	<= 250 Kbit/s	<= 125 Kbit/s
Range	<= 50 m	<= 100 m (depending on frequency)	<= 300 m		<= 300 m
Power	Very low	High	Very low	Harvesting	Harvesting
Wakeup time	<= 6 ms	<= 3 s	< 30 ms	< 30 ms	< 10 ms
Battery lifetime	Weeks to month (rechargeable)	Hours (rechargeable)	Month to years		
Security	AES 128 + + application layer	SSID	AES 128 + AES 128 + application layer		Option
Nodes	Depending on implementation	32	2 ¹⁶	2 ¹⁶	2 ³²

Benefits of Wireless Lighting Controls

- Cost savings
- Demand management
- Flexibility
- Scalability
- Simplicity uf use
- Energy management
- Other add on.

Why IPv6?

- IPv4 is limited to 4.294.967.295 addresses
- IPv6 provides 3.4 x 10³⁸ addresses
- There are only 10²⁵ graints of sand on earth
- Let's settle for 10¹⁰ objects on the IoT
- IPv6 is an enabling technology for the IoT

IPv6 in ZigBee and 6LoWPAN

Protocols for constrained Embedded Devices

100s - 1000s of bytes

Multi Agent Systems

- Autonomous software agents colaborating in one system
- Decentral concept with distributed intelligence, no manadory central control, no need of designated controlling agent
- Not necessarily determined, can be self-organzing and self-learning
- Enables loose couplings
- More flexible and reliable.

Seven Pitfalls in the Internet of Things

- 1. Not understanding the Paradigm Change
- 2. Lack of Interoperability
- 3. Lack of Intelligence
- 4. Lack of Security
- 5. Lack of User Centered Design
- 6. Not understanding the real Driver
- 7. Not understanding the Impacts on Development

Dimensions of Interoperability

Process Interoperability

Semantic Interoparbility

Technical Interoperability

Unified Communication & Protocol Abstraction

Seven Pitfalls in the Internet of Things

- 1. Not understanding the Paradigm Change
- 2. Lack of Interoperability
- 3. Lack of Intelligence
- 4. Lack of Security
- 5. Lack of User Centered Design
- 6. Not understanding the real Driver
- 7. Not understanding the Impacts on Development

Artificial Intelligence

Intelligence of Smart Objects & Hardware Abstraction

"Smart Objects are Objects which with the embedding of Information Technologies possess capabilities over and above their primary applications."

Seven Pitfalls in the Internet of Things

- **1.** Not understanding the Paradigm Change
- 2. Lack of Interoperability
- 3. Lack of Intelligence
- 4. Lack of Security
- 5. Lack of User Centered Design
- 6. Not understanding the real Driver
- 7. Not understanding the Impacts on Development

Security in Building Automation System & IT

		BAS sta	IT mechanisms			
	BACnet	LonWorks	KNX	ZigBee	IPsec	TLS
Entity authentication	+	-	-	+	+	+
Authorization	-	-	~	+	+	+
Data integrity	+	~	-	+	+	+
Data freshness	+	~	-	+	+	+
Data confidentiality	+	-	-	+	+	+
Data availability	-	-	-	-	-	-
Embedded devices	+	+	+	+	-	~
Communication models	-	~	-	-	~	-
Scalability	-	-	-		-	-
Non IP networks	+	+	+	+	-	~
QoS features	-	-	-	~	~	+

Security by Design

Security

- Security is not only a question of the communication protocol
- Security has to start with hardware (e.g. hardware encryption, hardware based communication)
- Security as to be included in the application level (e.g. authentification, sandboxes)
- Special mechanisms e.g. for man in the middle & overload attacs & APT-infection
- Open Source.

Open Source

Seven Pitfalls in the Internet of Things

- 1. Not understanding the Paradigm Change
- 2. Lack of Interoperability
- 3. Lack of Intelligence
- 4. Lack of Security
- 5. Lack of User Centered Design
- 6. Not understanding the real Driver
- 7. Not understanding the Impacts on Development

User Centered Design

UCD Standards

• User-Centered Design process for interactive systems

EN ISO 9241-210 (replaces EN ISO 13407) ISO PAS 18152

- Ergonomics of Human Machine Interfaces (HMI)
 EN ISO 9241-110
 ISO TR 16982
- Software Usability

EN ISO 9241-11 EN ISO 14915

• Design for All.

UCD Process

Plan

Define user requirement & analyze competition

Design

Design wireframes, interaction sequences & navigation

Proto type

Develop & test dynamic prototypes for usability

Review

Review wireframe designs with customer

DYI - Maker Culture

Seven Pitfalls in the Internet of Things

- 1. Not understanding the Paradigm Change
- 2. Lack of Interoperability
- 3. Lack of Intelligence
- 4. Lack of Security
- 5. Lack of User Centered Design
- 6. Not understanding the real Driver
- 7. Not understanding the Impacts on Development

Business Model

How is the revenue earned?

How IT transforms the Business Model

Credits: Oliver Gassmann

Keep on moving - reinvent your Business Model

Business Model Canvas

Internet driven Business Models

Web 2.0 Web as Social Media "When users add value"

E-Commerce Freemium Leverage Customer Data Open Source (Software) Digitalization User designed Crowdsourcing Crowdfunding Long Tail Open Source (Content)

Web 3.0 Internet of Things "When sensors add value"

?

Digitally charged Products Sensor as a Service

1995

IoT Business Models - Grades of Maturity

New Quality of IoT Data

- Location based
- Realtime
- High resolution
- Ubiquitous

Data based Services

-

0

11.

Heizung

- ThingSpeak
- If this then that (IFTTT)
- Wolfram Alpha
- ...

Services powered by Embedded Devices

Smart Building

Real Time Location Services

LED luminaire with VLC enabled driver

adcast of

Technologies: Qualcomm Lumicast or Bytelight

Phone plugin for decoding VLC positioning information & 1-time download of loalty qpp with fixture and merchandise map

1. time commission;

Database with fixture coordinates merchandise map + Analytics

Heat-map of Occupancy Activity

Augmented Reality

- AR is a live view (direct or indirect) of a real world environment whose elements are augmented by computer generated sensory input such as graphics, video, sound or GPS-data
- Augmentation is conventionally in real time an in semantic context with the environmental elements
- With the help of technologies like computer vision and ojbect recognition the surrounding real world of user becomes interactive and digitally manipulable.

physio sense

Seven Pitfalls in the Internet of Things

- 1. Not understanding the Paradigm Change
- 2. Lack of Interoperability
- 3. Lack of Intelligence
- 4. Lack of Security
- 5. Lack of User Centered Design
- 6. Not understanding the real Driver
- 7. Not understanding the Impacts on Development

What's new for many Industries?

- Intelligent Sensors
- Microcontroller
- Software
- Distributed Intelligence
- Data
- Analytics
- Services

Agile Development

Wrap-up - Impacts

- Future-proof products have to adopt to IoT technologies
- IoT is non **domain-specific** (e.g. lighting controls)
- Developing IoT based solutions requires a deep understanding of embedded systems
- Intelligent software concepts will be the key factor to generate USP in the industry
- Connecting products with the IoT opens complete new business models in several industries
- Industries have to rethink it's development approach and consider open source
- Solely hardware based business models gonna have though times.

Thank you - Questions?

